
MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 1

1. Prove that for all sets A,B

(a) A ∪B = (A −B) ∪ (A ∩B) ∪ (B −A).

Solution 1. For an arbitrary element x,

x ∈ A ∪B ⇐⇒ (x ∈ A) ∨ (x ∈ B)

⇐⇒ (x ∈ A ∧ x ∉ B) ∨ (x ∈ A ∧ x ∈ B) ∨ (x ∈ B ∧ x ∉ A)

⇐⇒ (x ∈ A −B) ∨ (x ∈ A ∩B) ∨ (x ∈ B −A)

⇐⇒ x ∈ (A −B) ∪ (A ∩B) ∪ (B −A).

�

Solution 2 (long, but still correct). We show that one is a subset of the other and vice
versa.

A∪B ⊆ (A−B)∪ (A∩B)∪ (B −A): Fix arbitrary x ∈ A∪B. Only the following cases
are possible and we handle each case separately.

Case 1 : x ∈ A but x ∉ B. Then x ∈ A −B and thus x ∈ (A −B) ∪ (A ∩B) ∪ (B −A).

Case 2 : x ∈ A and x ∈ B. Then x ∈ A ∩B and thus x ∈ (A −B) ∪ (A ∩B) ∪ (B −A).

Case 3 : x ∈ B but x ∉ A. Then x ∈ B −A and thus x ∈ (A −B) ∪ (A ∩B) ∪ (B −A).

(A −B) ∪ (A ∩B) ∪ (B −A) ⊆ A ∪B: Fix arbitrary x ∈ (A −B) ∪ (A ∩B) ∪ (B −A).
If x ∈ (A −B) ∪ (A ∩B), then, in particular, x ∈ A, so x ∈ A ∪B and we are done. If
x ∈ B −A, then, in particular, x ∈ B, so x ∈ A ∪B and we are done. �

(b) (A ∪B) −B = A −B.

Solution. We show that one is a subset of the other and vice versa.

A −B ⊆ (A ∪B) −B: Fix arbitrary x ∈ A −B, so x ∈ A and x ∉ B. Because x ∈ A, we
also have x ∈ A ∪B, so by the definition of −, we get that x ∈ (A ∪B) −B.

(A∪B)−B ⊆ A−B: Fix arbitrary x ∈ (A∪B)−B, so x ∈ A∪B and x ∉ B. x ∈ A∪B
means that x ∈ A or x ∈ B, but we have that x ∉ B, so it must be that x ∈ A. Thus,
x ∈ A −B. �

2. Prove or give a counter-example:

(a) For every function f ∶X → Y and every B ⊆ Y , If(B)c = If(Bc).

Solution. We prove this. Before we even start, we recall the definition of If(D) for a
subset D ⊆ Y :

If(D) ∶= {x ∈X ∶ f(x) ∈D} .
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Now we are ready to start the proof. Fixing arbitrary x ∈ X, we show that x ∈

If(B)c⇔ x ∈ If(Bc). Indeed,

x ∈ If(B)c ⇐⇒ x ∉ If(B)

⇐⇒ f(x) ∉ B

⇐⇒ f(x) ∈ Bc

⇐⇒ x ∈ If(B
c).

�

(b) For every function f ∶X → Y and every A ⊆X, f(A)c = f(Ac).

Solution. This isn’t true in general and here is a counter-example. Let X = {1,2} , Y =

{3} and define f ∶ X → Y by f(1) ∶= 3, f(2) ∶= 3. Take A = {1}. Then f(A) = {3},
so f(A)c = ∅. However, Ac = {2}, so f(Ac) = {3}. Thus, in this example, f(A)c is a
strict subset of f(Ac). �

3. Let f ∶ R→ R be the function defined as follows: for x ∈ R,

f(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x2 if x ≤ −1
∣x∣ if −1 ≤ x ≤ 1
x x ≥ 0

.

Is f a well-defined function? Justify your answer.

Solution. To check that the function is well-defined, we need to check that in the over-
lapping cases, the values are the same.

The first overlap is x = −1: by the first line it is (−1)2 = 1 and by the second line it is
∣ − 1∣ = 1, so they are equal, and thus, f is well-defined at −1.

Now the second overlap is when x ∈ [0,1]. According to the second line, f(x) = ∣x∣, but
since x ≥ 0, ∣x∣ = x, so f(x) = x, which coincides with the third line, so f is well-defined
on [0,1]. �

4. (a) Let g ∶ R → R be the absolute value function, i.e. g(x) = ∣x∣ for each x ∈ R. What is

Ig(g([−1,0)))?

Solution. g([−1,0)) = (0,1] and Ig((0,1]) = [−1,0) ∪ (0,1]. �

(b) In general, for an arbitrary function f ∶ X → Y and A ⊆ X, what is the relation
between A and If(f(A))? Prove your answer.

Solution. The relation is A ⊆ If(f(A)). To prove it, fix arbitrary x ∈ A. Thus,

f(x) ∈ f(A), so by the definition of If(f(A)) (recalled above), x ∈ If(f(A)). �

5. Recall the definition of linear independence for points (vectors) in Rn.
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Definition. Vectors v⃗1, v⃗2..., v⃗k ∈ Rn are called linearly independent if

∀a1, a2, ..., ak ∈ R[a1v⃗1 + a2v⃗2 + ... + akv⃗k = 0⃗ Ô⇒ (∀i ≤ k, ai = 0)].

Vectors v⃗1, v⃗2..., v⃗k ∈ Rn are said to be linearly dependent if they are not linearly indepen-
dent.

(a) Write out explicitly what it means for vectors v⃗1, v⃗2..., v⃗k ∈ Rn to be linearly dependent.
The only negation sign/word in your sentence should be negating equality ≠.

Solution. ∃a1, a2, ..., ak ∈ R[a1v⃗1 + a2v⃗2 + ... + akv⃗k = 0⃗ ∧ (∃i ≤ k, ai ≠ 0)]. �

(b) Are the vectors (1,1) and (1,0) linearly independent? Prove your answer.

Solution. Yes, they are. To prove it, we fix arbitrary a1, a2 ∈ R and suppose the
hypothesis of the above implication holds, namely:

a1(1,1) + a2(1,0) = (0,0).

We need to show that a1 = 0 and a2 = 0. Simplifying the left-hand side of the above
equation, we get:

a1(1,1) + a2(1,0) = (a1, a1) + (a2,0) = (a1 + a2, a1).

Thus, the equation gives

(a1 + a2, a1) = (0,0),

so a1 + a2 = 0 and a1 = 0. Plugging-in a1 = 0 to a1 + a2 = 0, we see that a2 = 0. Thus,
we have shown that a1 = 0 and a2 = 0. �

(c) Are the vectors (1,0,0), (0,1,1) and (1,1,1) linearly independent? Prove your an-
swer.

Solution. No, they are not. To prove this, we need to find a1, a2, a3 ∈ R such that

a1(1,0,0) + a2(0,1,1) + a3(1,1,1) = (0,0,0)

and yet at least one of a1, a2, a3 is nonzero. But this isn’t hard as one can notice that
the sum of the first two vectors equals the third vector, so

(1,0,0) + (0,1,1) − (1,1,1) = (0,0,0).

In other words, taking a1 = a2 = 1 and a3 = −1 works. �

6. Consider the sequence (xn)n∈N, where xn =
(−1)n

n2 . Determine whether the following are
true or false, and prove your answer in either case.

(a) ∀ε > 0 ∃N ∈ N ∀n ≥ N ∣xn∣ < ε.

Solution. This is true and here is a proof. Fix arbitrary ε > 0. We need to find N ∈ N
(most likely in terms of ε) so that for any n bigger than N , 1

n2 < ε.

On scratch paper (doesn’t have to be included in your solution): OK, we want
1
n2 < ε. Now how large should n be for this to be true? Well, let’s find out by solving
the inequality 1

n2 < ε for n. Tu-tutu-tutu, we get n > 1
√

ε
. Aha, so as long as n is

bigger than 1
√

ε
, I’d be fine. Wait, but this n is going to be ≥ N , so if I choose my
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N any natural number greater than 1
√

ε
, this whole thing would work! For example,

I can take N = ⌈ 1
√

ε
⌉ + 1. Oh boy, oh boy, why am I so clever?

On the official midterm paper (with a serious face): We take N = ⌈ 1
√

ε
⌉+1 and let

us check that ∀n ≥ N we indeed have 1
n2 < ε. Fix arbitrary n ≥ N . Thus, n ≥ ⌈ 1

√

ε
⌉+ 1,

so, in particular, n > 1
√

ε
. Solving this inequality for ε gives 1

n2 < ε. Have a pleasant

day. �

(b) ∃N ∈ N ∀n ≥ N ∀ε > 0 ∣xn∣ < ε.

Solution. We show that this is false by proving its negation, which is:

∀N ∈ N ∃n ≥ N ∃ε > 0
1

n2
≥ ε.

Fix arbitrary N ∈ N. We need to find n ≥ N and ε > 0 such that 1
n2 ≥ ε. But this is

easy: take n = N and ε = 1
n2 . �
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