MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015
 PRACTICE PROBLEMS FOR MITERM 1

1. Prove that for all sets A, B
(a) $A \cup B=(A-B) \cup(A \cap B) \cup(B-A)$.

Solution 1. For an arbitrary element x,

$$
\begin{aligned}
x \in A \cup B & \Longleftrightarrow(x \in A) \vee(x \in B) \\
& \Longleftrightarrow(x \in A \wedge x \notin B) \vee(x \in A \wedge x \in B) \vee(x \in B \wedge x \notin A) \\
& \Longleftrightarrow(x \in A-B) \vee(x \in A \cap B) \vee(x \in B-A) \\
& \Longleftrightarrow x \in(A-B) \cup(A \cap B) \cup(B-A) .
\end{aligned}
$$

Solution 2 (long, but still correct). We show that one is a subset of the other and vice versa.
$A \cup B \subseteq(A-B) \cup(A \cap B) \cup(B-A)$: Fix arbitrary $x \in A \cup B$. Only the following cases are possible and we handle each case separately.
Case 1: $x \in A$ but $x \notin B$. Then $x \in A-B$ and thus $x \in(A-B) \cup(A \cap B) \cup(B-A)$.
Case 2: $x \in A$ and $x \in B$. Then $x \in A \cap B$ and thus $x \in(A-B) \cup(A \cap B) \cup(B-A)$.
Case 3: $x \in B$ but $x \notin A$. Then $x \in B-A$ and thus $x \in(A-B) \cup(A \cap B) \cup(B-A)$.
$(A-B) \cup(A \cap B) \cup(B-A) \subseteq A \cup B$: Fix arbitrary $x \in(A-B) \cup(A \cap B) \cup(B-A)$. If $x \in(A-B) \cup(A \cap B)$, then, in particular, $x \in A$, so $x \in A \cup B$ and we are done. If $x \in B-A$, then, in particular, $x \in B$, so $x \in A \cup B$ and we are done.
(b) $(A \cup B)-B=A-B$.

Solution. We show that one is a subset of the other and vice versa.
$A-B \subseteq(A \cup B)-B$: Fix arbitrary $x \in A-B$, so $x \in A$ and $x \notin B$. Because $x \in A$, we also have $x \in A \cup B$, so by the definition of - , we get that $x \in(A \cup B)-B$.
$(A \cup B)-B \subseteq A-B$: Fix arbitrary $x \in(A \cup B)-B$, so $x \in A \cup B$ and $x \notin B . x \in A \cup B$ means that $x \in A$ or $x \in B$, but we have that $x \notin B$, so it must be that $x \in A$. Thus, $x \in A-B$.
2. Prove or give a counter-example:
(a) For every function $f: X \rightarrow Y$ and every $B \subseteq Y, I_{f}(B)^{c}=I_{f}\left(B^{c}\right)$.

Solution. We prove this. Before we even start, we recall the definition of $I_{f}(D)$ for a subset $D \subseteq Y$:

$$
I_{f}(D):=\underset{1}{\{x \in X: f(x) \in D\} .}
$$

Now we are ready to start the proof. Fixing arbitrary $x \in X$, we show that $x \in$ $I_{f}(B)^{c} \Leftrightarrow x \in I_{f}\left(B^{c}\right)$. Indeed,

$$
\begin{aligned}
x \in I_{f}(B)^{c} & \Longleftrightarrow x \notin I_{f}(B) \\
& \Longleftrightarrow f(x) \notin B \\
& \Longleftrightarrow f(x) \in B^{c} \\
& \Longleftrightarrow x \in I_{f}\left(B^{c}\right) .
\end{aligned}
$$

(b) For every function $f: X \rightarrow Y$ and every $A \subseteq X, f(A)^{c}=f\left(A^{c}\right)$.

Solution. This isn't true in general and here is a counter-example. Let $X=\{1,2\}, Y=$ $\{3\}$ and define $f: X \rightarrow Y$ by $f(1):=3, f(2):=3$. Take $A=\{1\}$. Then $f(A)=\{3\}$, so $f(A)^{c}=\varnothing$. However, $A^{c}=\{2\}$, so $f\left(A^{c}\right)=\{3\}$. Thus, in this example, $f(A)^{c}$ is a strict subset of $f\left(A^{c}\right)$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows: for $x \in \mathbb{R}$,

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq-1 \\ |x| & \text { if }-1 \leq x \leq 1 \\ x & x \geq 0\end{cases}
$$

Is f a well-defined function? Justify your answer.
Solution. To check that the function is well-defined, we need to check that in the overlapping cases, the values are the same.

The first overlap is $x=-1$: by the first line it is $(-1)^{2}=1$ and by the second line it is $|-1|=1$, so they are equal, and thus, f is well-defined at -1 .

Now the second overlap is when $x \in[0,1]$. According to the second line, $f(x)=|x|$, but since $x \geq 0,|x|=x$, so $f(x)=x$, which coincides with the third line, so f is well-defined on $[0,1]$.
4. (a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the absolute value function, i.e. $g(x)=|x|$ for each $x \in \mathbb{R}$. What is $I_{g}(g([-1,0)))$?

Solution. $g([-1,0))=(0,1]$ and $I_{g}((0,1])=[-1,0) \cup(0,1]$.
(b) In general, for an arbitrary function $f: X \rightarrow Y$ and $A \subseteq X$, what is the relation between A and $I_{f}(f(A))$? Prove your answer.

Solution. The relation is $A \subseteq I_{f}(f(A))$. To prove it, fix arbitrary $x \in A$. Thus, $f(x) \in f(A)$, so by the definition of $I_{f}(f(A))$ (recalled above), $x \in I_{f}(f(A))$.
5. Recall the definition of linear independence for points (vectors) in \mathbb{R}^{n}.

Definition. Vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ are called linearly independent if

$$
\forall a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}\left[a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{k} \vec{v}_{k}=\overrightarrow{0} \Longrightarrow\left(\forall i \leq k, a_{i}=0\right)\right] .
$$

Vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ are said to be linearly dependent if they are not linearly independent.
(a) Write out explicitly what it means for vectors $\vec{v}_{1}, \overrightarrow{v_{2}} \ldots, \overrightarrow{v_{k}} \in \mathbb{R}^{n}$ to be linearly dependent. The only negation sign/word in your sentence should be negating equality \neq.
Solution. $\exists a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}\left[a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\ldots+a_{k} \overrightarrow{v_{k}}=\overrightarrow{0} \wedge\left(\exists i \leq k, a_{i} \neq 0\right)\right]$.
(b) Are the vectors $(1,1)$ and $(1,0)$ linearly independent? Prove your answer.

Solution. Yes, they are. To prove it, we fix arbitrary $a_{1}, a_{2} \in \mathbb{R}$ and suppose the hypothesis of the above implication holds, namely:

$$
a_{1}(1,1)+a_{2}(1,0)=(0,0)
$$

We need to show that $a_{1}=0$ and $a_{2}=0$. Simplifying the left-hand side of the above equation, we get:

$$
a_{1}(1,1)+a_{2}(1,0)=\left(a_{1}, a_{1}\right)+\left(a_{2}, 0\right)=\left(a_{1}+a_{2}, a_{1}\right) .
$$

Thus, the equation gives

$$
\left(a_{1}+a_{2}, a_{1}\right)=(0,0),
$$

so $a_{1}+a_{2}=0$ and $a_{1}=0$. Plugging-in $a_{1}=0$ to $a_{1}+a_{2}=0$, we see that $a_{2}=0$. Thus, we have shown that $a_{1}=0$ and $a_{2}=0$.
(c) Are the vectors $(1,0,0),(0,1,1)$ and $(1,1,1)$ linearly independent? Prove your answer.

Solution. No, they are not. To prove this, we need to find $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ such that

$$
a_{1}(1,0,0)+a_{2}(0,1,1)+a_{3}(1,1,1)=(0,0,0)
$$

and yet at least one of a_{1}, a_{2}, a_{3} is nonzero. But this isn't hard as one can notice that the sum of the first two vectors equals the third vector, so

$$
(1,0,0)+(0,1,1)-(1,1,1)=(0,0,0)
$$

In other words, taking $a_{1}=a_{2}=1$ and $a_{3}=-1$ works.
6. Consider the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, where $x_{n}=\frac{(-1)^{n}}{n^{2}}$. Determine whether the following are true or false, and prove your answer in either case.
(a) $\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n \geq N\left|x_{n}\right|<\varepsilon$.

Solution. This is true and here is a proof. Fix arbitrary $\varepsilon>0$. We need to find $N \in \mathbb{N}$ (most likely in terms of ε) so that for any n bigger than $N, \frac{1}{n^{2}}<\varepsilon$.
On scratch paper (doesn't have to be included in your solution): OK, we want $\frac{1}{n^{2}}<\varepsilon$. Now how large should n be for this to be true? Well, let's find out by solving the inequality $\frac{1}{n^{2}}<\varepsilon$ for n. Tu-tutu-tutu, we get $n>\frac{1}{\sqrt{\varepsilon}}$. Aha, so as long as n is bigger than $\frac{1}{\sqrt{\varepsilon}}$, I'd be fine. Wait, but this n is going to be $\geq N$, so if I choose my
N any natural number greater than $\frac{1}{\sqrt{\varepsilon}}$, this whole thing would work! For example, I can take $N=\left\lceil\frac{1}{\sqrt{\varepsilon}}\right\rceil+1$. Oh boy, oh boy, why am I so clever?
On the official midterm paper (with a serious face): We take $N=\left\lceil\frac{1}{\sqrt{\varepsilon}}\right\rceil+1$ and let us check that $\forall n \geq N$ we indeed have $\frac{1}{n^{2}}<\varepsilon$. Fix arbitrary $n \geq N$. Thus, $n \geq\left\lceil\frac{1}{\sqrt{\varepsilon}}\right\rceil+1$, so, in particular, $n>\frac{1}{\sqrt{\varepsilon}}$. Solving this inequality for ε gives $\frac{1}{n^{2}}<\varepsilon$. Have a pleasant day.
(b) $\exists N \in \mathbb{N} \forall n \geq N \forall \varepsilon>0\left|x_{n}\right|<\varepsilon$.

Solution. We show that this is false by proving its negation, which is:

$$
\forall N \in \mathbb{N} \exists n \geq N \exists \varepsilon>0 \frac{1}{n^{2}} \geq \varepsilon
$$

Fix arbitrary $N \in \mathbb{N}$. We need to find $n \geq N$ and $\varepsilon>0$ such that $\frac{1}{n^{2}} \geq \varepsilon$. But this is easy: take $n=N$ and $\varepsilon=\frac{1}{n^{2}}$.

